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NASA TT F-10,295

SPECTRAL THEORY OF SEMIBOUNDED OPERATORS AND THEIR USE */165
IN SPECTRAL ANALYSIS OF DIFFERENTIAL OPERATORS

K.Friedrichs

The direct methods of the calculus of variations are applied
to solve the eigenvalue problems of linear partial differ-
ential equations that have no conventional discrete spectrum,
and to thus obtain the spectral theory of quantum-theoretical
energy operators, based on Schrodinger's representation. The
notations of the general operator theory of the "abstract"
Hilbert space are used as basig for developing the spectral
theory of semibounded symmetric operators. Hilbert's and Weyl's
criteria for broving that the spectrum is partly discrete are
extrapolated to semibounded operators. The theory is applied
to differential operators, for the typical case of n =1, 2, 3.
It is demonstrated that the eigenelements of the projectién
operators are twice continuously differentiable functions. A
method is given for an accurate determination of the nature of

the spectrum, for the auxiliary potential v.

The present investigation was induced by the desire to use the direct
methods of the calculus of variations for solving the eigenvalue proﬂlems of
such linear partial differential equations that have no ordinary discrete
spectrum and thus are not accessible to the calculus of variations. Specifical-

1y, we meant to obtain the spectrai theory of the quantum-theoretical energy

¥ Numbers in the margin indicatevpagination in the original foreign text.



NASA TT F-10,295
operators, based on Schrodinger's representation.

In this‘attempt, it was found that a large number of equivalent conclusions
ahd concepts in the varlous problems can be uniformly combined by subjecting
them to the symbolism of the general operator theory of the Hilbert space;
specifically, we mean here the "abstract" Hilbert space as it had originally
been logically worked out by v.Neumann (Bibl.7.2). The‘previously preferred
representation of the Hilbert space by infinitely many variables was found too
.awkward for the representation of function spaces. In addition, as mentioned
earlier by v.Neumann (Bibl.7.1), the representation of unbounded linear operators
by infinite matrices may actually be misleading.

Conversely, it was found unnecessary to make use of the general spectral
theory of unbounded operators as developed by v.Neumann since we only took semi-
bounded operators into consideration; for this type, the spectral theory can be
directly reduced to that of the bounded operators. In fact, most energy opera-
tors are semibounded downward. Similarly, in treating eigenvalue differential
equations by the calculus of variations, the semliboundedness was utilized to its
major extent.

A theory for semibounded operators was developed by A.Wintner (Bipl.13);
however, this refers mainly to infinite matrices.

Until now, eigenvalue problems of differential equations had frequently
been reduced to the Hilbert theory [see for example (Bibl.6)] but in such a /466
manner that the explicitly known Green function was used for finding the bounded
reciprocal of the differential operator. Usually, cases were involved in which
a discrete spectrum occurred.

Beyond this, the theory of differential equations with singularities, as

developed by H.Weyl, (Bibl.l2.1, 12.2)% was predominantly applied.
* (next page)
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Weyl's theory was formulated in a more general manner by Stone (Bibl.10.2)
and expanded differently, without reduction to integral operators.

Essentially, this theory uses the well-known two-parameter family of solu~
tions of differential equations; this is the reason for the difficulty en-

countered in attempting a direct extrapolation to partial differential equa~

LAYR
&)

tions™™ .

In Part I of this report, we are developing the spectral theory of semi~
bounded symmetric operators in the abstract Hilbert space. This theory is
readily obtained when considering not only the operators but also the corre-
sponding forms. Without restriction, let this form G be positive-semibounded,
il.e., let it be assumed that a positive v exists so that, with the unitary

form H, the following is valid:
G =y Il

The form G can be conceived as the dimensional form of a new Hilbert space

* Weyl treated the eigenvalue equation

0:n*{—nb+(§—£d)%ﬂ_

for a function u(x) in x 2 0. Here, it is assumed that p > O and that p and g

are continuous in x 2 0. At x = 0, a boundary condition cos $u + sin 9§ du -

dx
= 0 is established. Weyl demonstrated that two cases can occur:
1) the critical point case in which, in addition to the existence of
«©

I w?dx, no further condition need be made for u at x =
0

2)-the limit cycle case in which a cyclic one-parameter family of
boundary conditions at x = « is available for selection.

Weyl also gave a method for obtaining the eigenfunctions of the continuous
spectrum from the solutions of the elgenvalue differential equation, not located
in the Hilbert space, by integration to the eigenvalue.

#% In writing this paper, we noted that Carleman (Bibl.l) mentioned that it is
easy to apply the Weyl theory to equations with several variables, either di-

rectly or over the theory of the Hermitian integral equations.



(a subspace of the original space). Then H becomes a bounded form. The /467
spectral analysis, known for the bounded form, thus leads directly to the spec~
tfal analysis of the semibounded” form G.

Such semibounded forms G can always be obtained from semibounded operators.
The spectral analysis of such operators, however, is possible and can be ob-
tained in this manner if and only if these operators are "selfadjoint" (hyper-
maximal). This condition, for the case of semibounded operators,can be re-
placed by considerably weaker types which are also easier to verify for our
differential operators.

Finally, we will-extrapolate Hilbert's and Weyl's criteria (Bibl.5.2, 12.3)
for partial discreteness of the spectrum, to semibounded operators.

In Part II of our paper, the above theory will be applied to differential
operators. There, we are restricting ourselves to two typical cases. ILet the

operator be

n
ol
~ 2 T +v(z, ..., x,),
pa==1

applicable to the functions f(X1, «e., X;). Only the case n =1, 2, 3 will be
continued to the eﬁd. First, we treat the case (1) of the infinite region with
the steady function v, bounded downward; secondly, in this case (2) a singulari-
ty of v in one point is admitted; thirdly, a finite region is used along whose
boundary the function f [case (3)] or its normal derivative is to vanish

[case (4)]. For convenience, this particular region is selected as line segment,

circle, and sphere. The results for the cases of the finite region are not new,

% This also offers a simple access to the spectral theory of arbitrary unbounded
selfad joint linear operators. This new method, compared to the conventional
methods by v.Neumann (Bibl.7.2), Stone (Bibl.10.1l), and Fr.Riesz (Bibl.9),
offers the main advantage that it does not presuppose that the basic Hilbert
space be complex; this method will be used elsewhere.
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but thelr treatment was included here so as to demonstrate in how far the theory
of all cases can be developed in common.

The first problem is to indicate the spaces of the permissible functions.
At first, these are ho Hilbert spaces but are continued to Hilbert spaces by an
ad junction of ideal elements. We will not realize these ideal elements by
quadratically integraﬁle functions according to ILebesgue, maihly for the reason

that it can be demonstiated that the "eigenelements" of specific interest /168

>R

here belong already to the initial function spaces™.

Similarly, the operator 1s first explained only in a space of twice dif-
ferentiable functions and then is closed off formally but uniquely.

The main problem is to demonstrate that this operator is selfadjoint. In
fact, this constitutes the essential difficulties of the entire theory; theée
can be overcome by extrapolating the method of reasoning developed specifically
by Courant (Bibl.2.1, 2.3, 2.6, 4.1), which is decisive in the direct methods
of the calculus of varilations. ‘

It will be found that, by coordination with the abstract operator theory,
not much can be saved in the theories required for concrete differential opera-
tors. Aside from the somewhat more systematic arrangement, one gains the possi-
bility of simultaneously treating cases in which a discontinuous spectrum
occurs.

The main result of Part II is the spectral analysis of the differential
operator. By this we mean the existence of a "spectral family", namely, a
family of projection operators in the sense of the general spectral theory (see

Part I, Sect.4). In addition, it is demonstrated that the eigenelements of

#* This process corresponds fully to the method used by Hilbert in his reduction
of the integral equations to equations with infinitely many variables (Bibl.5.1).
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these projection operators are twice continuously differentiable functions. We
will not bother to represent these projection operators and their eigenelements
by means of solutions of the eigenvalue differential equations. However, for
the eigenfunctions of the point eigenvalues, it follows directly that they
satisfy the elgenvalue differential equation. According to Weyl, the eigen-
functions of the continuous spectrum in the case of one dimension could be ob-
taine@ from the solutions of the eigenvalue differential equation by integrating
to the eigenvalue. In the separable cases with more dimensions, this is also
entirely possible, as we will show in another paper. For such a representation,
in the general case of higher dimensionality, no arguments are available; we
also do not believe that this particular point need be emphasized in the in-
vestigation.

Another result relates to a discussion of the spectrum. Under simple con-
ditions for the "accessory potential" v, the nature of the spectrum can be more
accurately defined. We have here a discrete polnt spectrum growing to infinity
if the region is finite. The same is true for the infinite region, if the
auxiliary potential v increases at infinity beyond all bounds. Conversely, /469
if the auxiliary potential has a finite lower limit at infinity; the spectrum
below this value will be discrete.

These criteria correspond to one portion of the criteria established by
- Weyl in a theory of differential equations with singularities; however, they
can be proved in a manner independent on the number of variables.

The present paper contains Part‘I of these investigations; Part II will be

published in. one of the next issues.



PART I L4710
SPECTRAL THEORY OF SEMTBOUNDED OPERATORS

l. Basic Concepts

We will first assemble a few well-known (Bibl.7.2) basic concepts and
theorems on forms and operators, using a system of notations suitable for our
own purposes so as to be independent of the remaining literature.

A space X, §, @, T of elements x, h, g, £ is to mean always a real linear
space with ~ unless stated differently - at least denumerably infinitely many

linearly independent elements.

A bilinear form coordinates, to each pair of elements x, x1, a real number

which is linear in x and x;; we denote this”® by
, %Jl z.
We always assume
Az =zdzx

l.e., that A be symmetric.

Llet a quadratic form xAx, consisting of such a bilinear form, be denoted

as "never negative", if

z2ds =0

is valid; for such forms - as follows already from the known method of reason~

ing - the following Schwarz inequality is wvalid: /171

s, dz < Viz, Ax) VizAa).

% This symbolism is patterned after that given by Dirac. Our entire theory can

be developed also in the complex space, with only minor and completely conven-
tional modifications.



This expression is called positive~definite only if x = O always follows from
xAx = 0.

If, in a space %, a metric lxl = /xXx has been introduced by a positive-
definite "measure" xXx, then it will be possible to explain the density of a
set in % and the convergence of'a sequence x. We will formulgte this as follows:

A sequence x converges strongly (X)

I) ™n itself" if |xy - xu| = 0, v, p~ o
II) to x, if |xy - x| 20, v~ =
is valid.

If the space is separable (i.e., if it contains a denumerable dense set)
and closed (also complete), meaning that a limiting element exists for each con-
vergent sequence, then this space becomes known as an (abstract) Hilbert space.

Below, we will use a Hllbert space § of elements h, with the measure
form® H.

It is of importance for our treatment that frequently subspaces of §, such
as @, are used as Hilbert spaces with a different measure such as G and that
then both convergence and density are referred to these. In that case, we speak
for example of convergence (G) and of G~density.

Subspaces T, 8, ... of §, in which forms and operators are explained, will
always be‘ assumed as H-dense in §.

An operator A explained in § < §, coordinates an element h from § with each
element £ from fF.

To each operator A in §§, there "belongs" the form A in $:
I} Af = (,I 1 A)).

% The usual notation is obtained on replacing H by a comma.
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The operator is known as symmetric if it constitutes the corresponding

form; unless stated otherwise, operators will always be assumed as symmetric

and linear.

e
&

An operator B in § is denoted as bounded” if this is its form B; there
exist two real mumbers B;B, so that B(fHf) < (fBf) < B(fHf) is valid here.
The next simple class is represented by the semibounded forms.. A form G,

defined in @ < §, is known as positive—send.bounded%(')e (dovmward) with the /L72

(lower) bound Y 1f a bound y > O exists such that, for all elements g from @,
gGg=ylgHyg)

Correspondingly, an operator ié known as positive-semibounded if it is the
corresponding form.

Of importance for what follows is the property of the "state of closure"
that positive-semibounded forms may possess.

A positive-semibounded form G is known as closed in @ if the space @ is
closed, with gGg as measure. Then G is also a Hilbert space with G as measure™ .

For (not necessarily semibounded) operators A, defined in dense subsets §

# The non-symmetric operator S is denoted as bounded if the following is- valid
for £, f1 from $:

{tush)=Cifiihl

¢ Without the assumption y > 0, the form would be only semibounded but can
always, by addition of (1 - vy) (gHg), be changed into a positive-semibounded
form. '

30 It is easy to construct a denumerable G-dense subset (8) of G. First -
separability of § - a denumerable H-dense set (M) exists in each subset Tt of §.
Let us now form the sequence of subsets @, of @, characterized by the condition
gGg < n(gHg). BEach element g belongs to one of these. The set (8,), i.e., the-
denumerable H-dense subset of @,, is then also G-dense in @, and the sum of
the (B,) will have the property desired of (@).



of §, v.Neumann (Bibl.7.3) introduced the concept of the state of closure on
which the above concept is patﬁerned. His formulation is equivalent to the
following [similar to that mentioned by him (Bibl.7.6)1:

An operator A in % is known as closed if the space F is closed, with

AfHAf+ I f (in shorf.}i A+ 1)

as measure.

2. Continuation by Closure

The differential operators of prime interest here usually are not glven in
closed spaces and are themselves not closed, whereas this property is presup-
posed in the general spectral theory. Already for this reason it is of interest
to investigate whether spaces, operators, and forms can be continued to closed
types in expanded definition domains.

Let a space § of elements h and with the méasure H be given. To continue
the space §' to a space § involves: adjoining additional - also deno%ed by h - /L73
(ideal) elements, followed by, together with the elements from § , addition and
multiplication with real numbers, and then defining the form H positive-definite.

Then the following theorem applies:

Theorem 1. If the space § with the measure H is separable, it can be
continued to a closed, i.e., a Hilbert, space §, but only by one single procesé*
such that g is depse in §.

Proof. let each self-converging sequence hy from §'

|hy — hu] - 0,

% This means that two continuations can be conformally mapped onto each other
in such a manner that multiplication with real numbers, addition, and values of
the form H can be simultaneously mapped.

“
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be coordinated with an ideal limiting element h, unless there is already a
limiting element of &' in existence. Ilet the same limiting element be coordi-
nated with two such'sequences hiy, hgy for which |h1v - hgvl - Q0. If two se-
quences hyy, hay éoséess limiting elements hy, hz (from § or ideal types),
then hyyHhgy will have a limiting value, which is defined here as hiHhz. It is
easy to demonstrate that H is then bilinear and positive-definite in the entire
space £ and that any continuation, stipulated in theorem 1, can be produced in
this manner.

Let an operator A be defined in ¥ < §. To continue the operator A in '
in a subspace § of & (§F < T = §) means to define it, for the elements of § not
located in ¥, such that it will be linear and symmetric in all of §§.

The continuation of a form can be explained in an entirely similar manner.

In that case, the following theorems apply:

Theorem 2. A bounded operator B or a bounded form B, explained only in a
dense subspace of §, can be uniquely continued with the same bounds B in @*.

Theorem 3. An operator G, explained in the space §' of the elements f, is

assumed to lead to a positive-~semibounded form G with the bound y > O

fHG =Gl Zy( .

Then, a subspace ® of § containing .c{s" ' < 8<§) exists in whicl:1 the form G
can be continued to a closed form with the same bound Y. © and Gigrg uni quely
defined if ¥ is to be G-dense in @.

Iet G in @ be the closed form belonging to G in § or G in§ .

Before proving theorem 3, we should mention another theorem. YN

Theorem L. To each operator A in 5, there exists a subspace § of §,

# Similar statements apply also to non-symmetric operators.
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containing §', in which a closed continuation of A can be defined. Here, § and
- Ain § are uniquely defined if §' is to lie dense in §, with & + H as measure.
A in § is denoted as the closed operator of A in 3 .

Theorem 4 and its simple proof were given by v.Neumann (Bibl.7.3).

Remark on theorems 3 and L. The operator G in §§' is assumed to lead to the

form G in §' . Let G in § be the corresponding closed operator and G in @ the
corresponding closed form. Then, § comes to lie in @.

Llet us first prove this remark, and then prove theorem 4 and finally

theorem 3.

Proof of the remark. If f is located in J, it can be H-approximated by a

series fy for which also Gfy will H-converge so that we also have

(It“‘/ga) llG(/v_/“) = 0 for v, y “» 00,
l.e.,

(/v ‘_,,u) G(/v_ /,u) d 0;

which means that fy also converges with respect to G; the limiting element f,
according to theorem 3, must also lie in 6.
Next, let us briefly review the proof of theorem 4 according to v.Neumann.

If, .for a sequence fy, the following form converges
(b=t H (b —t)+ A= h) H A~ ) >0 oo,
there will be limiting elements fo and hy so that
./r > for At = by (I ).
A11 possibly resulting elements fo will constitute the obviously linear
space . If two such sequences 'f“, fay pOsséss thé same limiting element fi0 =

= f0, then also Afiy and Afpy will have the same limiting element since, for

all h from 9, the following is valid: '

12



hH (fiv—fay) = 0, -
and thus also for )

h=A/r ‘

where f represents all elements from §', i.e.,
A/H(/u-/n)?/HA(I‘M—/”)“’0' SN el
and, consequently, - ‘ o
fH (hy— by) = 0;

VSince ¥ is densely located, it follows thét Hio = hgoe It is now possible /475
to define the operator A in all of §, by Afy = ho; obviously, this operator
remains linear and symmetric.

The proof of theorem 3 is conducted similarly. Incidentally, not every
positive-semibounded form can be continued to a closed form; for this, an
auxiliary condition -~ for example the condition that this férm belong to an
operator - is required. |

For proving theorem 3, we will use theorem 2 for closing off the space §',
with the measure G, by adjunction of first ideal elements, yielding a space O
of elements g with the measure G. Each sequence fy af elements from §' , which

is self-convergent with G as measure, will also converge with H as measure,

because of

vt = 1G
which means that it has a limiting element h from . However, at first glance
it does not seem impossible that two different limiting elements g and gz might
correspond to two sequences fiy and foy, while the limiting elements hi = hg
are identical. We will demonstrate that this does not occur. From the assump-—
tion that an operator G belongs to G, we can conclude that:

Iemma‘ﬁ.l. If, for a sequence fy from § ,

13



WAhllI,—»O for all h from ©
is valid, it follows that®
lf#l. -0 for all £ from §
This is so, since
[ Gl =GfH{, - 0.
From lemma 3.1 it then follows readily:

lemma 3.2. If, for a sequence fy from§',
(h=f)GHe—f) -0 'for' ¥, b > 00

is valid and

lrI[/,—»OV for v - oo,
then we also have ’ R

[Gli—+0 for 3 - o0,
This is so since, for such a sequence, the prerequisite of lemma (3.1) is /476

satisfied; thus, f,Gfy — O at fixed p. Next, the Schwarz inequality

Un Gla—h G I S V=T G~ fa) Vs G F

is used, Here, the lower limit of the right-hand-side, as v = =, tends to zero
with increasing w. The lower limit of the left-hand side for v — « is f|,Gf,;
consequently, also f;Gfj, = O with increasing u.

This proves directly: If fyy and fzy are two sequences from % which define
two limiting elements gy and gz and two limiting elements hy, hs and if Iy = ha,
then the prerequisites of lemma (3.2) are satisfied for the difference fy =

= f1y - foy. Consequently, we have (fiy - fzy)G(f1y - fay) — 0, from which it

#* In addition, if fyGfy remains bounded, we have gGfy — O also for all g from @
since §' is G-dense in @. Then, lemma 3.1 means: If such a sequence fy con-
verges weakly in § with H as measure, then it must also converge in @ with G

as measure. This property (3.1) is also equlvalent to the semicontinuity of G
in the case of weak G convergence; the next proof is nothing else but an abstract
formulation of frequently used semlcontlnmty proofs; see also Courant

(Bibl.2.4) for the method of reasoning used..
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follows that (g1 - g2)G{g1 - g2) = O and thus also g1 = gz

If g1 = gz is a real element from §', then g1 = gz = hy = hpz, since the
sequence f1y converges also with respect‘to H toward gi. Conversely, if g1 = g=
is an ideal element from ®, it will be identified by hy = hp. However, this

will change O into a subspace of §.

3. Operator of a Form

Whereas a certain form belongs directly to each operator, the opposite is
the case only to a limited extent. According to Fr.Riesz (Bibl.9.2), the
following applies:

Theorem 5. To each bounded form B in § there corresponds a bounded opera~

tor B in §, so that we have

hBh=hilBh.

Proof. lLet is be permitted to give a simple proof which does not refer to
representation by an orthogonal system.
Let us p'ose the minimum problem, namely, that of coordinating, to each

element k; from §, such an element h = ko for which
JR)=hilh—2h DBk,

becomes as small as possible. It is certain that J[h] is bounded downward since
B is bounded. Consequently, a lower bound d and a minimal sequence hy exist.
For these, it follows that

dy==h,Jd h,—2h, Bk, —~d
and, from

(hy-€h)y H (hy -+ €h) — 2 (h,+ ch) Bk, = d,
that

—d)+2e(h Hh,—hBk)+hHE=0,

15



meaning that it is never negative in ¢, so that (417
Vide— YR ITh = \h Il by — h B k, |
is wvalid for all h i:;'om $. From this it follows first that
| hAT by — b B3k, — 0
and then, by setting H=hy- hy, and permuting v with u,
(he = by} H (he — hy) = |(he = k) H e — (hy — hy) B k,v

+ (b — R I by — (hy — b)) BB &,
< (Vd, —d + Vi, — d) V(b — h,) 2T (h, = hu)

and, consequently,

(he — hy) H (hy— b)) < (Vd, —d + Vd, — d)* - 0.
However, this means that hy converges toward a limiting element ko. For this,

with each h from £, we obtain

Wil ky— h I3k, = 0. ()
The coordination of ko with k; is denoted here as operator B, i.e., we set
k, = Bk,

- Then, we will obtain:
1) B is unique since the difference of two ko, belonging to the same k;,
would have to be orthogonal on all h, according to eq.(3).
2) B is linear since the }sum of two ko satisfies the relation (%) for
the sum of the k3. However, its existence is characteristic for the

minimum property since

o+ B) AT (y + 1) — 2(k, + 1) Bk,
: > ko M by — kg Bk, = d

follows from it.

3) B belongs to the form B since eq.(*), for k3 = h, is transformed

16



into
hIT Bh—hBh =0,

From this it follows directly: 4) B is symmetric and 5) B is bounded.
As a new theorem, we can formulate the following:
Theorem 6. For a closed form G in 8 = §, semibounded by y > O, a bounded
. operator B exists such that .

is valid for g from G, h from §. We have
0<hHBh < .7?_ (h H h)

and the value domain of B lies in @.
This operator B will later be provedv to be the reciprocal of an operator /478
belor;ging to G.

Proof. In the Hilbert space G, H is a bounded form
9409 < - (g Gg);

which means that according to theorem 5 a bounded operator B, explained in @,
exists for which

gl h=gGBh (3¢)
ig first valid for all h from @ On setting g = Bh, with h from 8, we obtain

(BhG BR)Y = (BhAL k) < (Bh Il Bh) (hIlh) < %(BhGBh)(hHh)
or : -

(BLG Bh) < % (h IL B),

l.€.,

1
(kA Bh) < 7 (h IL R). (3s6¢)

This relation, which is primarily valid for h in @, demonstrates that B is

also H-bounded and thus can be continued to §. From eq.(?) and the assumed

17



state of closure of the form G it is concluded that Bh always lies in ® and that,
accordingly, the relations (%) and (%%%) hold also for all h from .

Theorem 6 could have been proved also by directly applying the minimum re~

quirement*, without referring to theorem 5.
From theorem 6, it follows directly that:
Theorem 7. To a.melosed_ pbsi’give—semiboundqd form G in @ < § there will exist,

in a G-dense subspace §F1 < G, an operator which "belongs" because of
gllGl=gG’/, /from((}‘
and whose value range is . Iet us denote this as "maximally corresponding"

operator for G.

Proof. let us, according to theorem 6, construct the bounded operator B;
let the range of values of f = Bh be §1. Then 1 is located in 6. Now, only

one h corresponds to each f from i1, since it follows from Bh = O,‘/because of

gGBh = g][h =0 for all g from ®

that also h = 0. Thus, the reciprocal of B is uniquely defined in F1; this /L79
will be denoted by G, i.e., it is assumed the Bh = f is equivalent to h = Gf.

The space %1 is G-dense in @, since otherwise an element go # 0 from &
would exist which would be G-orthogonal on i :

§o G =0; thus also g, G Bg, =g, Ilgy =0, i.e. g, =0

From this it follows that:

1) G is linear since G is unique and B is linear.

% Theorem 6 is related with the theorem by Toeplitz (Bibl.1l) on the limiting
resolvent of positive-definite forms of infinitely many variables, a theorem
which can be proved in a similar manner but more conveniently than with the

. Jacobi transformation (see Mathem. Annalen, Vol.l09, pp.254~256). Toeplitz's
theorem also formed the starting point for Wintner's theory (Bibl.13) of semi~
bounded matrices. ‘

18



2) G is symmetric since B is symmetric.
Auxiliary theorem 7. If G' in §' < 6 is an operator belonging to the form
G, i.e., an operator for which, with f' from § and g from @, the following is
valid :
gGf =glL&f,

then the "maximally corresponding” operator G in §1 is a continuation of G'
in ¥ .
Proof. With the operator B of theorem 6, let us form the element BG'f'

from §, for the element f' from 5'. Then, the following is valid for all g
from G:

gGBG [ =gHG [ =gGf;tme BGFf =/} i.ce.,f in §,

L. Selfadjoint (Hypermaximal) Operators

As demonstrated by v.Neumann (Bibl.7.2), a spectral analysis is not pos-
sible for each closed symmetric operator; for this (according to E.Schmidt),
the condition of hypermaximality (Bibl.7.3) would have to be satisfied. The
same condition was stipulated by Stone (Bibl.lo.l) as self—adjointness of his
spectral theory. |

Definition. Ilet a symmetric operator A be explained in §F < §. Iet Ain §
be selfadjoint if the following condition is satisfied:

If an element ho from § is coordinated with another h; from §, so that the

following is valid for all f from §
hILAf=h II|,
then ho is located in § and we have Ahg = by .

Obviously, a selfadjoint operator is always closed.

It is generally known that:
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Theorem 8. A bounded operator is selfadjoint.
To this, we juxtapose:
Theorem 9%. The operator G in §1 < 0, maximally belonging to a closed [J480

form G in @, is selfadjoint. We then speak of a corresponding selfadjoint

operator.

Proof. According to v.Neumann (Bibl.7.4) each symmetric operator with a
value range £ is selfadjoint. This is so since then an f, exists for hy, so

that Afy = hi; consequently,
ho AL Af == Af, I f = [, LA},

is valid and, since the Af traverse the entire §, it follows that fo = ho. From

this follows the assertion according to theorem 7.

It can now be demonstrated that, for positive-semibounded operators, the
self-ad jointness follows already from weaker conditions that are easy to check
for our differential operators.

Iet G in § be a closed positive-semibounded operator; let gGg in @ be the
pertinent closed form according to theorem 3; let G in g be the corresponding
selfad joint operator according to theorems 7 and 9. Then, we can introduce the

"iterated" spaces
Z Gy For Gy Far Ga -+

which consist of all elements f of ¥, for which, for example, Gf is located in
6’ %l’ 61’ 321 (5;1 oo

#* Theorem 9 also furnishes the proof for a conjecture by v.Neumann (Bibl.7.5):
A positive~semibounded operator can be continued to a selfadjoint operator with
the same lower bound. This is supposedly so because of the fact that, if this
operator G lies in %' then the corresponding form G, according to theorem 3, is
continued to a closed form; the corresponding selfadjoint operator G infi,
according to the auxiliary theorem 7, is a continuation of G in $'s that this
operator belongs to the same lower bound follows from the fact that this is
valid for the form G. The only undecided point is whether such a continuation
can be obtained also in a different manner.
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We then have:
Theorem 10. It is known that § =F,, i.e., that G in § is selfadjoint if,
forany n{(n=1, 2, 3, +..), the following is valid:

T ldes in ¥ &a)

or

®, lies in B (8,)

Proof. Since Fp+i lies in®,, it is sufficient to prove theorem 10 under
the assumption (§,). Since, according to the auxiliary theorem 7 and (§,), the
operators G explained lin Tis Bs Un are mutual continuities and since § ié closed,
it is _sufficient to demonstrate:

The closed operator of G in §, is G inJi. For the proof, it must be /481
taken into consideration that §, constitutes the value range of B"h where B is
the reciprocal of G in i according to theorem 6. From this it follows that F,

is dense in §; if this were not the case, an element ho # O with O = hoHB*h =

1l

B"hoHh would exist for all h, from which it would follow that Bho = B 'ho =
= .40 = ho = 0. Iet now f; be an element of ¥;, so that a sequence ¥ from
%+1 exists for which f¥ = Gfy. Then we also have Bf® - f; and G(Bf') - Gfy,

i.e., the closed operator to G in §§, is explained for f1 and yields Gfy .

5. Spectral Analysis

Before formulation and proof of the spectral theorem of semibounded forms,
let us give a number of known concepts and correlations on the spectral family,
in a system of notation and arrangement suitable for our purposes.

According to v.Neumann (Bibl.7.2), any representation of the spectral reso-
lution must be based on “projection operators or individual operators".

A projection operator P is an operator defined in § which satisfies the
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relation
Pr=p
Obviously, 1 - P is such an operator.
let the elements Ph and (1 - P)h be the eigenelements and antielements of
P; let their value domains .‘8 and §eP be the eigenspace and antispace of P.
The requirement of symmetry

Ph I by = 7&, ][Ph,
'
for hj, hy from § is equivalent to

PhyH(1—P)hy=0

i.e., to the fact that eigenelements and antielements or eigenspace and anti-
space of P are orthogonal.

Equivalent is also the identity
hith = Ph L Ph~+ (1 —P)h (1 — P)h.

For the form P, belonging to a symmetric P and constituting the "single

form", the following is valid:

0 < hPh< hICh,

where equality (for all h) exists only for P = O resp. P = 1. Specifically,
the boundedness of P is demonstrated in this manner from the symmetry.

The properties, relating to the unitary form H, can be analogously ex-
plained also for other forms. We say that P 1s symmetric with respect to the
form A in § or, briefly, A-symmetric in § provided ‘that not only f but also Pf
lies in §§ and the equivalent identities for f, f1, fz from ¥ exist: /482

Pl Af, = f A Pf,
fAf=PfAPf+(1—P)fd(l—P)}
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Then, the follomlné holds:

i

0L IAPI < [A).

A projection operator P can be permuted with an operator A in §§ if, to-

gether with f, also Pf is located in § and if
APf = PAJ

is valid. The operator P is permutable with A in §§ as soon as P is not only
symmetric with respect to H but also with respect to the form fAf in §, belong-
ing to A.
Below, we will always assume that P is symmetric (i.e., H-symmetric in §).
The fact that, between two projection operators Py, P;, the following rela-

tion exists for all h from §
hh = hDPgh

is equivalent with the fact that the eigenspace of P, contains that of P; and

the antispace of P, that of Py . Expressed in formulas, this reads
PPy =P, 1—-P)(1—P)=(1—P) or PP, =P,

Then, also P, - P; is a projection operator.

The spectral family is a family of projection Operatérs that depend on a -
real parameter @ in such a manner that the pertéining forms are monotonic. At
the points o at which these forms may become discontinuous, two projection
operators can be attained as limiting values from above and from below. It is
suggested to imagine each value of o as coordinated with two projection opera-
‘tors whose forms are continuous from top to bottom. . For more convenient nota-
tion, we will designate the projection operators by the symbols o and o~ (in-

stead of @ + 0 and @ - 0), This motivates the following explanation:
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To each real mumber @, let the symbols o, ¢~ be coordinated; in general,
let o and o be denoted by o*; for @ = @ and @ = — », let @* = « and a* =
= -o" be introduced. We set of < ok if oy < @z and, in addition, &~ <ao*.

The interval

da == (a;, o)

is assumed to containlg’ each point o for whose two symbols @* the following is
valid: o < @° < op; this automatically includes intervals with and without end
points, (¢, o) contains only the point a.

Now, let a projection operator Pg' be coordinated with each a® in such /483
a manner that, for each h from § with the corresponding forms hPgh, the follow-
ing holds: |

1) I
oy < oy, then hl’,;hshl’,"h.

Y - 00
2) If, as v ~ o,

@, § «, then WDk | hPsh,
®y &, then AP h t hD-h.

LY

Then, Pq+ is a spectral family.
The spectral family is complete if

Pt =0, Pu=1

is valid. The difference operator

Pie =P(¢|',U-z') == Pu;_Pa'

i
of the interval & = (@}, o%) again is a projection operator. It represents
the skip operator

Pla—ya*) =0

only for an at most denumerable set of values o, known as point eigenvalues.
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Let the spectral theorem for bounded forms -~ as is suitable for our

purpose ~ be postulated as follows:
Theorem 11. Iet B in § be a bounded form with the bounds B, B; let B in §

be the corresponding operator. Then, there will be exactly one complete spectral

family Qg+, so that the following holds:

1) Q* is symmetric with respect to the form B and with respect to H.

2) The two “eigenvalue inequalities"

Bo(h T Quph) < (RBQuph) < B, (hILQugh)

exist, with A8 = (B3, Bi) for all h from §.

Auvxdliary theorem 1l.1. We have Qg = 0, Qgt = 1.

Auvxiliary theorem 11.2. The operator B in § can be permuted with Qg*.

The proof of theorem 11 and of the auxiliary theorems is readily obtained

from the conventional formulations of the spectral theorem [see gpecifically
Fr.Riesz (Bibl.9.3)l].

The spectral theorem for closed positive-semibounded forms reads as follows:

Theorem 12. Let‘ G in @ be a closed form, semibounded downward by y > O,
and let GinF <@ Dbe the corresponding selfadjoint operator. Then, exactly
one complete spectral family Rys will exist, so that we have: [L8L

1) Rye is symmetric with respect to the form G in @ and with respect to
H in .

2). The two “eigenvalue inequalities"

vl R,y g) S (.r/G‘Rn 9) S vslg L R,y q)

exist, with &y = (v{, v3) for all g from G.

Auxiliary theorem 12.1. We have Ry~ = 0, R - = 1.

Auxiliary theorem 12.2. The operator G in §fi1 can be permuted with Rye.
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Auxiliary theorem 12.3. The eigenelements of the differential operators

Ry of finite intervals Ay are located infj .

We will say that the spectral family Rys furnishes the spectral resolution
of Gin @ and of G inF1 .

Proof. Theorem 12 is a simple logical consequence of theorem 1l. This is

so since, in the Hilbert space @, the form H will become a form bounded with

respect to @, with the bounds O and -%- = E; here theorem‘ll can be applied,

'fﬁrnishing a spectral Eamily Qg*» Then, we set B = + for B > 0. In this
mainner,

Ryv=1—0Q4, Ry- =1—Qps
will explain also a spectral family. This family is complete since, first, the
auxiliary theorem ll.l indicates that we have Qf = 1, i.e., Ry~ = O. Secondly,

1l- Qst =1, a verification of Qgt = O is required. If we

to demonstrate R

would not have Qgr

0, an eigenelement h = Q + h of Qg+ would exist and,
according to the second eigenvalue inequality with B} = 0", it would be neces-
sary that (hHh) < O from which, however, h = O would be obtained.

Since R("Yit, 'Y:gb) = Q(B;F, BT) , the eigenvalue inequalities of theorem 11 are
transforrﬁed directly into those of theorem 12. Similarly, the G-symmetry of Ry.
in @ follows directly from this; however, the symmetry with respect to H follows
only »Fin ®; anyhow, the Ry are defined by ihe above definition only in §. How-
ever, from the H-symmetry of Ry- in @ there follows the H-boundedness in @;
.consequent'ly, the Ry. can be continued over the entire § and, as is quite obvi-
ous, without losing their character as a spectral family.

This demonstrates the existence of the spectral family of @. The unmique-~ -
ness is obtained from the fact that, inversely, the unique spectral family of H

in the space ® can be obtained from that of G.
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To prove the auxiliary theorem 12.2, we have to demonstrate that, for f /L85

from 1, also Ry-f is located in 1. However, for all f, f; from §i, we have
B fHG|, = R,.[ G}, = [GR,| = GfI[R,| = R,.G[II'f,

Since G in g1 is selfadjoint, it follows that Ry.f lies in ﬁlmand that
-GRys £ = Ry+Gf.

For proving the 'auxi_liary theorem 12.3, it si'xould be noted that, according
to the auxiliary theorem 12.2, the operator GRpy (Ay, finite) is applicable
in ¥ . However, from the eigenvalue ihequa]ities it follows that GRpy is sym-
metric with respect to H and is bounded, since this is the case for the perti-
nent form

lllGRdr/ = /GRJVI

Consequently, the operator GRAY can be continued over all of §; in this case, '

the operator will be denoted by (GRAY) in . Now, using £ from 1, we have
(GR,)hilf = R, h HG/

which is valid for all h from § and thus also for all h from . Since G is
selfadjoint, it follows that Rpyh is located inFi and that GRyyh = (GRpy)h

applies.

6. Complete Continuity and Discrete Spectrum

Hilbert and Weyl developed simple criteria for the fact t~hat the spectrum
of a given operator in a given interval consists only of discrete point eigen-
values of finite méultiplicity. For these criteria, we will give a simple proof
arrangement which simultaneously permits i’c;s extrapolation to unbounded opera~-
tors. Iet us first state the following:

A spectral family P, in a closed interval M = (o3~, ap+), has a discrete
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spectrum® if the eigenspace of Ppoq has a finite dimension.
Tt follows readily from this that Pg+, within this interval, is constant
in o' to within finitely many discontinuity points (point eigenvalues) whose

2,

. P . . St
elgenspaces have finite dimensions™".

In addition: The spectrum is denoted as discrete in a given interval if it
is discrete in each closed subinterval. In general, let the spectrum be desig-
nated as discrete if it is discrete in each interval.

Iet us now introduce the concept of complete continuity with respect to /486
a positive-definite form, as a generalization of the Hilbert concept of complete
continuity. In a manner differing from that used by Hilbert, complete continui-
ty can be characterized also by a prOperty*** which is convenient in verifying
the following theorems and is convenient to demonstrate in the application to
differential operators.

Definition. let gGg be a positive-definite form in a Hilbert space 8 < §.
Then, let the form gVg in @ be completely continuous relative to G (denoted
briefly as G-completely continuous) if a finite number of elements hi, haz, «..,

h, from § exist for each €, so that we have
lg¥ol < 2 (h I gP +e(g Go).

This directly yields the following:
Lemma. Iet a subspace 3 of @ have infinite dimensionality (i.e., have it

develop infinitely many linearly independent elements). Then, 8 contains also

# Known also as "discrete point spectrum".

LYAY]

%% The eigenvalues of a non-discrete point spectrum may lie densely or may have
infinite multiplicity.

#6¢ This is related with the characterization of complete continuity, preferred
by Hellinger and Toeplitz in their article in this Encyclopedia.
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an element z # O, for which
[2Vz| K e(z2G2)

is valid, i.e., also an element z with zGz =‘l and arbitrarily small zVz.
Since the space 8 has an infinite dimensionality, it defihitely contains
an element which is o;thogonal on arbitrarily many hi, hp, ees, hye
The Hilbert criterion (Bibl.5.2) then reads:

Theorem 16. A form hVh in §, which is H-completely continuous, has a dis-

R

crete spectrum in each interval not containing zero™ .
Weyl's criterion (Bibl.12.3) refers to the modification of the spectrum of>
a bounded form if a completely continuous form is added. We will be satisfied
here with extrapolating this criterion to positive-semibounded forms™*.
Theorem 17. Iet the form G in ® < § be semibounded with the lower bound
Y > 0 and let it be closed. Let thé form gVg be completely continuous in the
Hilbert space @ with the measure G.
Then, G + V has a discrete spectrum below Y (i.e., in each closed interval

below 1).

Auxiliary theorem 18. If the unitary form H is completely continuous with
respect to G, then G itself has a discrete spectrum in any case.

The proofs for the mentioned theorems become entirely simple if, in /487
accordance with the method applied by F.Rellich (Bibl.8) in investigating the
spectrum of differential equations, the above lemma is used as basis.

This lemma will be applied first in proving the first criterion (theorem

16). Assuming that an interval M = (@7, &%) not containing O would exist in
{

# The inverse also applies.

% An extrapolation of the general Weyl criterion to arbitrary unbounded opera-
tors will be performed elsewhere.
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which the spectrum of V is not discrete so that the eigenspace 3 of the spectral
family of V, belonging to A, would be of infinite dimensionality, i.e., would
have many l\inearly independent eigenelements z, then the lemma wo’uld indicate
that also a z exists in B for which the zHz would equal 1 and for which zVz
would be arbitrarily gmall. However, because of @3 > 0 or ap < 0, this contra-

dicts the eigenvalue inequalities which require that
o, (2 flz) S22 5 ey (20 2)
For proving the second criterion (theorem 17), we assume that, to an
interval with the upper bound Y(1 - ¢) <y, there would belong an eigenspace 3

of G + V with infinitely many linearly independent elements z. For these, the

eigenvalue inequality
G242V S y(l—€) (2 dl2);

exists; however, this inequality is in contradiction with zGz = \_{_(sz) if,
according to theorem 3, we select an element z from the subspace § of the
Hilbert space @, for which 2Gz = 1 but for which zVz is arbitrarily small.

The auxiliary theorem 18 follows directly from the fact that, for the

eigenelements z of (@i, @3), the second eigenvalue inequality
2G2S (2 112)

exists; for an eigenelement z with zGz = 1 and arbitrarily small zHz, this leads

to a contradiction.

Received July 14, 1933.
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SPECTRAL THEORY OF SEMIBOUNDED OPERATORS AND THEIR USE IN /685
SPECTRAL ANALYSIS OF DIFFERENTIAL OPERATORS. PART IT*

K.Friedrichs

1. Spectral Theory of Differential Operators of the Second Order

In this second part of our paper, the theory of semibounded operators will
be applied to linear differential operators of the second order, so as to obtain
their spectral analysis. Here, we restrict ourselves to a few typical cases
w@ose treatment will adequately demonstrate the generality of the method.

Let the operator in question be the "potential operator"

n

Sl '
G = —‘Z a(x, +‘U((ﬂ‘,uo,$");
14

ye= i

The elements to which this operator is to be applied are functions f of the
variables X3, see, Xp» The treated cases differ primarily by a different selec-
tion of the domain of the variables Xi, se., X; and by different boundary condi-
tions. To demonstrate that also quantum-theoretical-energy operators can be
classified with Schrodinger's representation, we simultaneously treated the
case that the "auxiliary potential"™ v has a singularity in one point. In addi-
tion, v (if necessary, by addition of a constant) has been selected so large
that G becomes positive~semibounded.

- Thus, we differentiate the following:

(1) Case of the infinite domain with regular v.

Here, the domain I' is the entire (X1, esey X;) space.' No special béundary

condition need be established.

# Part ‘I of this paper was published in Math. Amnalen, Vol.109, pp.465-487.
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(2) Case of the infinite domain with singular v; n > 17.
Here, v may become infinite, in a still to be indicated manner, on approach
to the point x; = cee = Xy = 0.
(3) Case of the finite spherical domain with regular v, at the boundary /686
~condition
f=0.
(4) Case of the finite spherical domain with regular v, at the boundary

condition -

Q)IQ)
- -
I

[}

Here, we have been satisfied in using, as finite domain, either a sphere,
a circle, or a line segment since for overcoming the difficulties inherent in
the nature of the domain our theory offers no new viewpoints. The same is true
for the selection of the boundary conditions which, incidentally, will be some—~
what weakened. Full treatment was given only to cases of the dimensionalities
n=1 2, 3.

For the dimension n = 1, the entire theory cén be represented in a much
simpler manner; the cases of finite domain are accessible feadily to conventional
methods (for example, calculus of variations). We included these cases so as

to clarify their coordination with the general theory.

2. Notatiqns

Iet a point of the variable space be denoted also by x = (X1, oeey Xp)eo

We then pose
r=|z| =Va +.. o

* The general theory of semibounded differential operators with singulgrities af
one variable, n = 1, will be presented elsewhere.
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The basic domain I' is to be as follows: in the case
(1) the total x~space,
(2) the total x-space without x = O,
(3) (4) the "sphere" r <R.
We are using the following abbreviations (at p < R):
Qp for the spherical area r = p,
Kp for the sphere r < p,
Kgp for the spherical shell p < r <P,

In addition (at o > 0) I'y is to mean: in the case

(1) I'g = Klb,
(2) Ig = K(;]/O',
(3) (ll') 1-'C)' = KR-—G,

so that, as 0 = 0, the domain I'; exhausts the entire domain I'.
As “square" about x = § with the side 20, we denote the domain |1 - €] <
<8, vee, |xn - En] < 8 or, abbreviated, [x - §] < 8. /687

The integration over the variable space will be denoted by
[oiids = [ drde

The improper integral over the total space f eeo dx is to mean the limiting
r

value of f ees dx as o — Q.

To

3. Function Spaces and Operator

First, we will define the Hilbert space §, the space © of the form G, and

* the space ¥ of the operator G. For this, dense subspaces known as "function
spaces" will be given, formed by functions with simple differentiability proper-
ties; these will then be closed to spaces of ideal elements.

In order to form the Hilbert space §, we first will derive the subspaces
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©' and §". As elements h, the subspaces " resp. &' possess all functions h(x),

. Iy . . e »
continuous or piecewise continuous”™ in I'y of the variables

T = (xu v e Tp)y
for which : o

hHh = J.h’(x)dz;
;

exists. We will use H as the measure. It is known that g is separable%* but
not closed. According to theorem 2 (Part I), the subspace § can be uniquely
continued to a cloged Hilbert space $, specifically by adjunction of ideal ele~
ments h for which also the measure hHh is explained, so that § is dense in §.

It is true that these ideal elements can be realized by quadratically & -inte-
gratable functions but there is no advantage in making use of this fact for /688

the case of n > 1.

We will use the following notation also for the ideal elements:

hIlh = J'h’dx;
Fi

If the elements h are functions h(x), the variable x will be visualized in each

case.,

As subspaces of $", let the spaces @" and @' be explained. Iet O" resp.®'

consist of all such functions g(x) of §" that have continuous or piecewise

% A function h(x) will be designated as piecewise continuous if it is not de-
fined on a finite number of planes xy = &y = const, spherical surfaces r = p =
= const, or finite number of points x = € and if it is otherwise continuous.
The :Lntegrals @h dx are to mean l:un:Lt:Lng values for ¢ — O of the integrals over

the domains formed from I by exclusion of the lxv - Ey| s e, |lr - p| <,
Ix - §| <e, If J'hld.x j‘hzdx exists, then we also have J'hlhadx.

T r
#¥% The linear combinations of the elements e of §'

€ 4= 2o in [x—§1< 4y €4 = 0 external

are known to lie H-dense in'.
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continuous first derivatives in I’ and for which the forms

gDy =r§ SHo@) ds [3(59) = 2(;‘-’;9)’].

Yy

gVg = [v(@)g @) ds

r

and thug -~ with G=0D + V -

169 = [ Y (Zo@) + @ s@)ds

r
exist.
In the case (3) at a finite domain I' = Ky, the functions g(x) of @ must
already be subjected to the boundary condition of vanishing on Q3. This is re-

placed by the less strict condition: '

*(w)dx > O i ‘
QR_{_OQ (x) xo_’o in G (1)

In the case (4) as well as in the cases (1), (2), no boundary condition
for @' is to be stipulated.

Then, the following conditions are formulated for the auxiliary potential

v(x):

Case (1), (3), (L),

Let v(x) be continuous in I’ and be bounded downward by
v(r) = 1. (2)

Case 522: n>1.

Using any P > 0, we assume that

1) For n 2 3,

n—2

o
ol =23%1 0<r< P,

% In the case n = 1, a piecewise continuity is sufficient; in the untreated
case n > 3, stricter requirements will have to be made on v.
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2) Forn = 2 1689
1

ln‘-‘—
r

1 0<r< P

DD

plr) =

for any A > P.
Then, let v(x) be continuous in I' and let one v, one P, and a number ©

‘from 0 £ ® < 1 exist so that, at ¢(r) = O for r > P, we have
v(.:c) >v— GW’.(") (2)@
Of} the constant v we also require that it be sufficiently 1arge, namely,
‘ v=14+04%,
where the constant k > O is to be determined in accordance with Appendix (2.2)*.

We will denote also the case (2) at ® = 0 by (2)o, and at @ # 0 by (2)®.

With the form G = D + V, explained in @', the following estimate exists:
9G9=(1-0)gDg+(gilg), (3)g

so that the form G is positive-semibounded. This fact, in the cases (1), (2)o,
(3), (4) with ® = 0 follows directly from ¥ 2 1. In the case (2)g, we refer to
the fa.ct‘ that, according to Appendix (2.2) and (2.3), the estimate
[ X (o) - 010 @)de+4 [ p@isz 0

"
-

. Ke Kp
is valid so that™ :
(9 ! 3 - T/ 9 \3 (
5{2(63:9(’;)) +"(x)g}d‘” = (I‘Q)EZ(‘,—;—Q) dz +j.g’dx. (%)
Ke Ke . Kp
% To coordinate the Schrodinger problem, it is necessary to set v(x) = - —S— +

+ conste

#% Together with eq.(3)@, it follows from eq.(4) that

§Gg = jvgtdz.
. r—-'Kp

which will be noted for later use.
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The space @ can then be closed, with G as measure, to a Hilbert space @
of elements g from §. According to theorem 3 (Part I), this follows from the
fact (to be proved below) that the form G in a G-dense subspace ¥ ’ of 8", leads
to an operator G. For the ideal elements from &, the forms D,' V, and G will
again be symbolically represented by the corresponding integrals. In that case,
the inequality (3)g will épply also in the space O.

The spaces §" and §' consist® of all functions f(x) from ®" that possess /690
continuous or piecewise continuous second derivatives in I' and for which the
function -Af(x) + v(x)f(x) (for abbreviation, we are using A = 5 & ) is

V=1 axav
located in §" resp. in 9 . InF , the operator G is explained by

G = —4+m

In the case (14,)- of a finite domain I' = Kp, the boundary condition -36}-
f(x) = 0 on Qg must be stipulated. We establish this condition in the weakened
form: With each function g(x) of 8", let the following be valid for f(x) from
& and §" in the case (4):

.
16 57 /@ do 0. (5)

,éb LI

In fact, ¥ is G-dense located in G" and the operator G in§' belongs™ to
the form G since, for each f from %' and for each g from @' “Green' s transforma~
tion"

1Gg = GfIyg; (6)

is valid. Tts proof will be given in Appendix 3.

3% In the case (1) it is sufficient to stipulate, instead of the correlation
with ®", the existence of continuous first derivatives, from which the existence
of the integral G follows automatically; see Appendix 3, auxiliary theorem.

% By twice continuously differentiable functions from 8' (see Sect.5.2), each
function from 3" can be G-approximated. Then,8' is G-dense in@'.
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The operator G in &', according to theorem L (Part I), can be continued
uniquely to a closed operator G in a space § of elements f. The space ¥ is |

located in @ [note on theorems 3 and L (Part I)], and eq.(6) remains valid in §
and G.

L. Spectral Analysis; Theorems

Naturally, it cannot be expected that the originally expla.ined\ operator G
in possesses a spectral resolution since it is not closed. However, this

can be stipulated for the uniquely coordinated closed operator G in {§. Beyond
this, it is established‘that the eigenelements of finite intervals® already lie
in the space " and thus are twice continuously differentiable and permit suc-
cessive application of G as often as desired.

The spectral resolvability of the operator G in § is due to its self- /691
adjointness. To prove that G is selfadjoint in § is one of our main tasks. For
this, we start from the bremise that the operator G in$', which had been closed
to G in ¥, can be continued in a different manner to a selfadjoint operator.
Namely: The form G in ', belonging to G in§', is formed first and then closed
to G in ® according to theorem 3 (I), after which the selfadjoint operator G,
belonging to G in @ and explained ingi < G is formed according to theorem 7
(I)**. Then, G in 1 is a continuation of G in §' and thus also of G in §
(auxiliary to theorem 7 (I)].

Consequently, it is sufficient to demonstrate §§ =$F1. For this, we refer

to the criteria established earlier for theorem 10 (I). Here, (F,):5. lies

# This means the éigenelements of the difference projection operators Rpy of
the spectral family Ry of G, belonging to finite intervals Ay.

¢ Equation (6) applies also for g in®, f inFi.
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in T or else (8,):8, lies in . The elements f from ¥1, for which Gf lies in

'6: 31’ (ﬁp 82) tee

formed the iterated spaces
.

G T Gy Fyy -+«

The first of our theorems will be differently formulated, depending on

the number of variables involved.

A. One variable: n = 1.

Theorem 1A:
1l. ® lies in §",
2. §1 lies in 6",
3.8, lies in §". .

B. Two and three variables: n = 2, 3.

Theorem 1B:
1. ¥ lies in $",
2. §; lies in @",
3. §z lies in F".
From theorem 1, it then follows that:
Theorem 2:

5 =%,

i.e., the operator G in ¥ is selfadjoint.

In fact, the criterion (6,) is satisfied in the case A while the

=) is satisfied in the case B.

Furthermore, it follows directly from theorems 1 and 2 that:

criterion

Theorem 3. If the operator G is arbitrarily often applicable to f from

¥ =%., then £, Gf, G®F, ..., G°F, ... will lie in F".
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Theorem L. A spectral family Ry, in the sense of theorem 12 (I), exists
for the form G in @ and for the operator G in F.
2) The eigenelements of the difference operators Rpy of finite intervals /692

&y = (Y1, Y2) are functions f,y(x) fromT". With these, the following eigen-

value inequalities apply:

I

n [ Enede < [ 3 (Bl @ + 0@ @) do < 5 [ By @da
r r .

Proof. Theorem L.l, according to theorem 2, follows from theorem 12 (1).
Then, according to the auxiliary theorem 12.3 (I), theorem 4.2 follows from

theorem 3.

5. Preparations for the Proof of Theorem 1

5.1 Mean Values

A principal aid is constituted by the mean-square values of elements h
from § over squares [x — €] < 6 from I'. For this, we introduce the elements

egp from ©' , which are defined by

R N
e 9(x) =0 out of [x— £] << 4,

The mean-square values of h from § are then explained by

e sdlh = fe_r,.; hvd-w,
F:

for which we also use the notation

1 hdx,
(20"

[r—¢l <

The limiting values of the mean-square values, on contraction of the square

to the center, will be denoted - so far as they exist - by hg:
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- hdz - ks
(2 6)” d=p0
l==-£1<_d

502 SDaceS 5' Yy o0 g 7.'.'

Frequently, functions of the spaces § , ..., §" will occur which vanish
outside of any domain I';. The subspaces, formed by these functions and obvious~

ly lying densely in §, are denoted respec.tively by
$ernr §
For the functions h(x) from § , the operator V is explained by
Vh =v(@)h(z)"

For elements f from ¥ , the operator

4f =j%/(w)

is explained, so that for f from %' /693
—1' a 9
XZ(ﬁgﬂ/)dx=—'YgAfdz (7)
r r

applies directly if g belongs to @.5' . This transformation can be extrapolated

2
to all g from @ since the form f z (%;g) dx i1s boundedly explained in@®.
r

5.3 The Operator Sy

Another aid is an operation which, from each element, produces another
element which vanishes at a sufficient distance in the neighborhood of the
singular point. For this, we select an arbitrarily often differentiable func-

tion sy;(x) with the following properties:

30(35) =1 in Ty,
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0<s,(0) S 1 in Tys — Lgy
8,(@) = 0 "out of F,,‘g. (8)

The operator S; in §' -is explained by

S, h = 8,(z) h (z);

Because of its boundedness, it must be continued over the entire . Obviously,
Ss will produce other el;aments from @ and 8". We can demonstrate that Sy is

Ec;unded in®, with G as measure. For this purpose, it is obviously sufficient
to demonstrate the boundedness in®', i.e., that, in this.condition -~ note® that
So is not symmetric with respect to G - the following is valid for two elements

g and @ of @'
[S.9G o' < ClgGyg)9.Gyg)
dsg
If ‘—Bf—l < ¢, |v(x)| < cz in Ty, then we have
: 9
lSnggll = gjsa(x)jﬁg(x)a%gx(x)dx

r

a d i - !
+,( 2 (ﬁsv(x)lngl (@) g (e)ds =V9DgVq, Dg+eVgHgVg Dy,

18ag V.| < Vgl g Vg, H g,

Taking the inequality (3)@ into consideration and using suitable constants

C, we will actually obtain \Sgg(}gl] < G /egGg /2.Gga -

6. Three lemmas /694

Lemma 1. If, for the element h from $, the limiting value hg exists con~
tinuously in € in such a manner that l[ egéhdx - hgo, for € = €5 ™ €5, then it
follows that:

1) the integral

# See previous footnotes on pp.8 and 10 of Part I.
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f&d@
r
exists.

2) h is a function h(x) from £" with h(x) = bhxe

Proof. Ilet us first note the relation valid for continuous hye

1 ; ' :
2o j hedz = (21 j hia,
=< r—%<?

(9)

where the integration of the left-hand side is to be understood in the conven-
tional sense. In fact, in all other cases we assume that [x - €,] <8 is a
square for which

»

1
- (26"

hodz — f hdzl=«>0
e—fil <y =3 <d "

is valid. Then, we resolve [x - §;] < 6, into 2" subdomains of a side 205 = 6;.
For one of these ‘

[z —¢&] <o, =i’2l,
the following must then be valid:

1
(2o)"

j hedz — j hdzlga.‘-

(=31 < 9y [2—¢2] <y

Closing furthermore in this manner, a nesting sequence of domains

[z_ 'gv] < 6v

I
|

will be created, which converge toward a limiting point §o. However, because
of the continuity of hg, we have for v — =,

i * }

W \ h,d.’ﬂ* h;:o, besides W 5 hdm—bhe..

["f;]<"r l3—5y1<".
from which the contradiction ]hgo - hgol 2 o originates.

Tt will be noted that the function s¢(x)hyx is an element
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hi = 8,(%) ".

from §". The above equation (9) is then, for all squares [x - £] < & from Loy

equivalent to
[2—nyesuda = 0.

r
If, now, k = k(x) is an element from $", then the function Sgk = sg(x)k(x)
can be approximated, by linear combinations, to the function g for which
(x -~ E]1<6 is located in 'y with 7 = -%—, so that we will have
[t — W) Sykdz =
K.

4\

Considering next Sghi. = hi, it follows that

[y =S, by kds = 0,
]

Consequently, we have

Soh = hi =" 8,(x) by

Then, for each element h from §, the following inequality applies:
[(Sehpds < [Wda,
r r

since it is valid for the h from & . Hence, we specifically have

[Bds= [k @de < [ W@ ds = [(S, WPz < [Bds.
Iy I r Iy

]

From this follows the first part of the statement, namely, the existence of the

integral ‘f hxdx. This definitely establishes that hxy is a function h"(x)

- . from §" for which Sgh”™ = sg(x)hyx = Sgh so that

[Sok(h* —hydw =0
K.
is valid; however, since the Sgk are dense in §, it follows that

h* = h.



This constitutes the second part of the statement.

In addition, we have:

Lemma 2. lLet an element g from © be a function g(x) from " and let g(x)
be continuously differentiable.

Then, !

1) the relations

J{zg(gag@ﬁvdx and J”&Qf(@dw,

r
exist;
2) the element g is located in G".
For the proof, we will use the form Gy which is assumed to be explained
in@ by

1600 = [{ 3 (Z1@) +v@0@]ds-0p(0) | # 0

o 2

with §(r) = o(r)r*™* and @ = 0, except in the case (2)g-

We have £696
4Gy = (1-—0)§2(%g)’dw +{(u+@ &) ¢ dz
iy ry
+C-)[j{Z’(ég)'—w'(f)g’}dw-w(a)‘\'y’dw]-
Iy R

From the properties of v(x) - and in the case (2)g according to Appendix
(2.1), (2.3) - it is obvious that gGpg does not decrease as 0 = 0O and actually

tends to gGg. Specifically, we have
9G.9 < 9Gy.

Thus, the form Gy is bounded in @' and therefore can be continued over the
entire @, in which case this inequality remains applicable.

_Since the operator Sg in @', with G as measure, is bounded, the identity
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SegGoeSsy = 9Goyg

valid in @ is also valid in G.

If the contimuously differentiable function g(x) lies in G andA,@", then it
is definite that Sgg = sg(x)g(x) lies in 6" and that, for 0 < oy - in the case
(2)g according to Appendix (2.0) - we obtain

-(1 —0) j. 2(%g)’dw+§(v+@¢’(r))g’dw

Iy Ty

=3 (@) +v@ i@ is—0y@ [P de

r(l ”0
= 8,0GS:9 = 9G,9 < 9Gy. |
Consequently, the left-hand side remains bounded with increasing o. From
this, we first obtain the existence of the integral
h ] a 9
jZ (7z9@) dz
r.

and - in the case (2)@ according to lemma (2.3) - the existence of

foi@) g @ da.

r

This proves the first'statement of lemma 2. The second portion, namely,
that g lies in @", follows directly for the cases (1), (2), (4) from the ex—
planation of G".

In the case (3), we still have to prove that g(x) also satisfies the
boundary condition
| ng_og’ (z)d:ca:no (1)
" For this, we will demonstrate that this boundary condition is equivalent to /[697
the following:

A constant C > O exists so that, for p > po > 0, the following is valid:
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j g’dw = 2C(R-—Q) J. 2(5%.(])’«1:5. (1;’(_)

”(' "q, R

In fact, from eq.(1¥), the validity of eq.(1) follows directly. Conversely, if

eq.(1) is satisfied, the inequality

j'g'dwgzj Pdw+2C (R — ) j D(%e)ds, e<t<R
90 ' 2 - Rp,R

is used, as it is obtained from eq.(1.1) in the Appendix, with C = pg~*. If

k-'t'= R—o—+ R

we will obtain eq.(1¥).

The inequality (1¥) is directly found as equivalent to the following condi-
tion: \

A constant C exists such that, for all p;, pz2 from

WS << RB

the following is valid:
02
j g'dz < 2C(R — ) rn—ldr.j 2(%;})’(11;. (

Koues . @ Koy, &

O
<
~

This is so since the inequality (1¥) follows from this for pz ~ p1 = p.
Conversely, the same relation proves the existence of eq.(1¥#*) taking into con-

sideration that an intermediary value p exists, so that we have

j Pdz = ?r"—‘f;lrj'g’dw.
41 :

Lo

Fowea
Both sides of eq.(1#%) represent forms bounded in 6', which must be con-~

tinued on @. Consequently, eq.(1¥*) is applicable also to the function g(x)

from §" and @ for which we just have proved thé existence of the integral

. 2 .

f pX (-—ag’-—g> dx. For g(x), these continued forms are represented also by the
X

r

integrals. Consequently, the condition (1) is satisfied for these functions
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g(x), which means that they are located inG".
Iemma 3. Iet an element f from F be a fwiction from 8" and let Gf = ‘h(x)
lie in §" and let f}(lx) have continuous second derivatives. Then, we have
1) Gf = —Af(x) + v(x)f(x);
2) fis loc?ted in g".
Proof. Let g(.x);x be an element from G". Then, since g is located in @ /698
and £ inf1, eq.(6) is applicable. Since g and f are located in 8" and Gf in
§", this equation is transformed into
[s@i@is = [[YLo0 i@ +o@e@ @)
r’ r

or, if a partial integration is performed, into

Jo@b@da = [g(@) (~ 4/ +v @)/ (@) da
r r

Since @" lies densely in §, it follows that
Gf = hiz) = — 4f(z) +v(2)[(2)

and h(x) lying in §"is transformed into f lying in 8", according to the ex~
planation of this space.
Then, it only remains to demonstrate for the case (4) that f£(x) satisfies

the boundary condition (5). The relation

[r@ei@ = Y Zow Ltw-ving@ @)z = o

r

which is valid for all elements g(x) from @ states that this integral, extend-
ing over Ko, vanishés as 0 @ 0., After conventional transformation, this will
yield

7}
(x) 5= f(x)dz —~ 0
} e, (5)
R0 .

for all functions g(x) from @ .
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7. Proof of Theorem 1A

The continuation of our proof, depenciing on the number n of independent

variables, will be separately performed.

A. One Independent Variable, n = 1

We are making use of the basic solution

K@—§ = —ilz—§

2
of the operator A = dz and form
dx

ke = k;(2) = — }3,()|o— &},

where sg(x) is to be selected in accordance with Section 5.3. Here, kg(x), as

a function of x, is an element of &' but'not of §' since the first derivative
-—%{-— kg(x) is discontinuous at x = £. The second derivative -d—i:— kg(x) =. /699
= Akg(x) , however, is again an element of §" and vanishes in Iy and external

to Tyg .

Iemma LA. For all g from & resp. h from §,

J'k; hdw is continuously differentiable
F.
|dkihdz is continuous
?
" d P . . 3
Tz gL 94 is continuous”

in §, if € lies in Ij.
Proof. These properties can be é.ssumed as known provided that the elements
h, g are continuous or continuously differentiable functions. However, in this

case they follow generally if it can be demonstrated that, for the three functions

¥#* See Section 5.2.
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and for ge = kgﬁe, the forms

gh.’dx and j‘(;d;g.)'da;

r r
remain bounded in €. This boundedness is directly determinable according to
the definition of kg(x).

Then, the § integrals
¢+

N
k54=§3g by dn.
t—d

are formed for the functions kg(x). Here, it will always be assumed that lx -
- §l < § lies in Iy. We then have:
Lemma 5SA. The functions kgp(x) are once continuously differentiable and
piecewise twice continuously differentiable, so that
- %k;,d(x) = — A4k g(z) = e 9(x) in I,
Hence,
ks g(z) lies in 5

Proof. We can calculate

ko = — 5 (m—P+ ) in |o—¢] <o

*-%lw—-fL if x otherwise lies in Ig.

External to Iy, the quantity k§6 is arbitrarily often continuously differenti-/700
able to x and outside of Ige, we have keg = O. From this, the statement is
derived.
Lemma 6A. As & = 0 and § = §5 — &, for each g from @, we have
d d ‘d d
j.ﬂke,aﬁydw - s iz k7942
r

r

I(A kea +e59) gda J.A k;g9dz.
r r

Proof. The first statement follows from the convergence

d . d
T2k = ke
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uniform in X except in a vicinity |x - 50! < e of x = §y. However,

(Z('li k;o,a)’da; s-;— - 0,
[}

lz—§i<t ~»0.
The second statement follows from the uniform convergence

a4 k;,d"l"e"’d == Ake",j—» 4 ksbutside of}I"’" ’
dksotes = 0= Ak in I,

Now, we are in a position to prove the following theorem:

Theorem 1.,1A:

G lies in $".,
let g be any element from @. Then, according to lemma 5A and because of the
. fact that kg lies in &', we obtain in accordance with Section 5.2
1 d '. d, d
33 gdz = | {egat d ko) gdz+ | ;o ko go9da;
lz~§i<d r r
Consequently, according to lemma 6A, a limiting value ge, exists as § = O and

€ = £ = Eo, resulting in

g = jAkegdx+j£k;§;gdx. (114)
r

r
According to lemma LA, ge is continuous in Iy and, since ¢ had been arbitrary,
also in I'. Then, according to lemma 1, g is located in §" with g(x) = gx.
Theorem 1.24:

F1 lies in G".

Proof. let f be an element of §f» < @ and let Gf = h lie in §. According
to theorem 1.1, £ = f(x) lies in " so that, according to eq.(114), the follow-

ing is valid:

HE) = jdke(z)l(w)dw- Sv(w)k;(x)f(x)dx + ]' (s higst+ vk f) dz;
r

Sdz
r r
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In addition, since kg lies in @, eq.(6) will yield /701

1&) =le k(@) [ (@) da — fv(z)k;(z)/(q;)dx-i—jk;hdaé. (124)
r . . .

The first two integrals, since v and f are continuous, are continuously dif-
ferentiable to §; this is true also for the last integral according to lemma LA,

Consequently, f(§) is continuously differentiable to £ and, according to
lemma 2, f lies in G".

Theorem 1.3A:

@, lies in F".

Proof. Iet f be an element from §§, so that Gf lies in®. Then, according
to theorem 1.1, Gf = h will lie in §" and the representation (124) is trans-

" formed into
H) =1[@—8 (h@) — v(@)/ (@)} do
rd
+ | k(@) (k(2) = v(@) (@) + A ke(@) (@) da. (134)

rull“ru

Since, now, h is also continuous, a double differentiation will yield the con~

tinuous function

Tl €)= =R (&) + (@)
+ f {é%’{t(x)(h(x)-"(z)/(x))+£;Ak;(x)/(z)}dz.

l‘,,,,-[‘,

SN

According to lemma 3, f will then be located in g".

8. Proof of Theorem 1B

B. Two and Three Independent Variables, n = 2: 3

"

Instead of the basic solutions with |z —§&| = V 2 (z, — &)

y==l
K@—§) = = 5-In|z—§| Y ofor o= 2,

1 1

Ke—8 = Gr=n

for n = 3
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let us consider the iterated basic solutions

I{'(m"’f)= —El—l;lw—-ﬂ‘{lnlm-ﬂ—l} t:orn=_-2,

I

L
K (5 — &) %{\z-—e\ for p = 3,

which are so selected that

AK® = K

Then, we set /102
ke = k(@) = 5, () K (m — &),

Except at x = §, k,.;(x) is twice continuously differentiable; however, IZ
(—éa—— k (x)> dx and J' (Akg(x)) dx also e:ast Akg(x), except at x = §, is twice
contlnuously dlfferentlable and A kg(x) is continuous. This is even more so the
" case for A° kg(x) =0inIy.

Consequently, kg lies¥ in @, Mk lies ing', and Nkg in §". Let the
function v(x)lke(x), lying in 9", be denoted by vike -

lemma 4B. For all h from §, g from G,

jd’k;hdx, is continuous
/
),‘ dk;hda, is continuous
jv Ak:hda, is continuous
_ .f kehd, _ is tﬁce continuously differentiable

2 2 .
2 9z ke gz94 is continuously differentiable

Ny MY

in € from Iy .
The arguments can again be considered as known for twice continuously

differentiable functions h and g. Since these are dense in § resp. 8, with

% A n=2kg lies in§ and, at n = 3, in§.
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H resp. G as measure, it is sufficient to demonstrate, at € = (€3, .., €,), that:

1

' 1 : n # 2 a
l) :A k€+() ALG+., UAL;+., a‘—e:—a—?l:k;:_’,‘,m(é——e'ke_'_'_azk‘)

are elements he for which f nZdx remains bounded in le[;

2)

d 1 { L d

S Kere s e V(k§+e - kg) are elements ge, for which ["Z<-${- gg) dx
remains bounded in |e|. This boundedness can be taken directly

from the properties of kg.

© Again, we will form the mean-~square values
) :

2o kydn = k.

h—é<d :

Then, we have the following: /703

Lemma 5B. The function kg,é(x) is three times continuously differentiable

while Akg'é, except at x = €, is twice differentiable; we have

— dkga(z) = e;9(z) in I
Hence, Akgs lies in 8.
Proof. If x is located external to Iy, then kg’é is arbitrarily often
continuously differentiable; however, within ly, we have

ko= | K(a—ndn
n—g<d

and the required properties of this integral are known.

lemma 6B. As 6§ 2 0 and § = €5 — §, for each h from §, we have

j.A kgohdz — }.Ak,:ohdz,

o r

jvd keohdz ->ij ke hd z,
1 £

[ ket e hds — (MK, hda.
r . r
Proof. The first two statements follow from the fact that, uniformly in x,
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Bkgs(x) = Bkg(x)

except in a vicinity |x - Eo| < ¢ and that there

j(dk;,.,)'dz= j - jzf(n—x)dn)'dx

|8=fol <o lz—fol<¢(2é)['l*ﬂ<"
1 .
= j 20" j (K(n—a)'dndz
)
jz=$l<ga  (n—§<d
1 f
S5 | | ®o—apasdy

lz—fol<t [n—z]<ot2ds|E~t]

< j (K (=) o’

12 <akadsg—go]

tends to zero simultaneously with € and 6.

The third statement follows from the uniform convergence

Aak.’;’,d'*‘ ¢4 = A’kf,d"’ A‘kfo outside of ',
Ak ates =0 =A%k, in [,

Now, we can directly prove the three theorems 1. /70L

Theorem 1.1B:

&, lies in §".

Proof. For fi from$f;, Gfi = h from §, the following is valid, taking
Section 5.2 into consideration and allowing for the fact that Akgﬁ lies in %’
and f; in @:

1 . ] ]
o _g hidz = 5 (eg04 A’k o) hdz + S 2 5z A ke 5, hda

T r—fi<<d r r

=’{(ec~'.;+ Bk hdz— [vd k;,d/‘dac+‘j'd ks shdz,

I

since f; lies in § and Akgg inF' so that eq.(6) is applicable here.
Consequently, according to lemma 6B, the limiting value fi¢, exists for

8 »0and § = &g ~ €y, so that, in Iy, we have
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he = [@*khda— [vakldo+ [Abhia, (118)
r r r

According to lemma 4B, fig is continuous in Iy and thus also in I'; according to
lemma 1, £ lies in " with £1(x) = fixe

Theorem 1.2B:

®, lies in G".

Proof. Ilet g; lie in@®;, i.e., also inFi1, and let Ggy = g lie in 8.
According to theorem 1.1B, g; = g1 (x) lies in §" and, since kg.é lies infg' R
the following is valid according to Section 5.2:

00 = | (k@) = v(0) 4 ;@) g, () 4

r

ik i)

r

(128B)

The first integral is continuously differentiable in I near €, which is true
also for the last term in accordance with lemma 4B. Thus, g:1(€) is continuously
differentiable in I'. According to lemma 2, gi(x) then lies in G".

Theorem 1.3B:

¥z lies in§' .
Proof. Ilet f5 lie in ez and
Gfy=hin §, @f=hin 9.

According to theorems 1.1B and 1.2B, fi = f(x) lies in §" and fz = fz(x) in @".

The representation (12B) - because of ke in 8 and fi inf, eq.(6) applies /705

here -~ will then assume the form

LiE)= [ {4k (2) ~ v(@) A ke (2)} o (a) d o

e

+ (@ k@), (@)
r

| (13B)
- 5 kihdz.
i
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The twice continuous differentiability of the first two integrals follows
in the known manner when using the continuous differentiability of fz(x); from
lemma 4B, there follows the twice continuous differentiability of the last term.

Consequently, according to lemma 3B, fo(x) lies in {".

9. Discussion of the Spectrum

We will give simple conditions for the behavior of the auxiliary potential
v in the case that the spectrum, in éeneral‘or below a given bound, is an
ordinary discrete spectrum. These conditions completely correspond to the
- Weyl's conditions (Bibl.12.2). In our method, we made use of a paper by Fr.
Rellich (Bibl.8). Primarily, the theorems from Part I, Section 7 are used which
are built up on the concept of complete continuity.

Theorem 5. For the case (3), (4) of the finite domain I' = Kyz: The spectrum
of G == A+ % is discrete, and an infinitely increasing sequence of eigenvalues
of finite multiplicity exists.

Theorem 6. For the case (1), (2) of the infinite domain: Let the auxiliary
potential v(x) increase uniformly to infinity as r = |x| — =.

Then, the spectrum of G = ~ A + v will be discrete, and an infinitely in-
creasing sequence of eigenvalues of finite multiplicity will exist.

3¢

Theorem 7%. For the case (1), (2) of the infinite domain: ILet

lim 'v"(a;) = Ve for || po.

Then, the spectrum of G = - A + v is discrete below v .
As an essential aid, we will use Poincaré's inequality (Bibl.,.2) for

domains [x - €] < 6 from I' [which, in the case (2), also are allowed to possess

# With respect to Schrodinger's hydrogen problem, see Courant-Hilbert
(Bibl.2.7).
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x =0 as vertex]: A ¢ > 0 exists so that, for all functions g from @, the

following is valid:

[Pormgn| [onfeoe | Tl w

lz—§<d z—8<d : fe—~§1<d
Proof. The proof, which is simple for domains [x - §] < 8, is noted /706
“here: It is sufficient to assume g as lying in @"\'. If (¥ -E1<6, [& -
- €] < 6, we have

o =g = | |50 ., 2l

|2y — 3§ {<d

dz,

|| @, . )|
12— £2]<d
4.
+ 10 (.3 3

9T (®F, +ovy Tneq, Tp)|dTpe
12g — &y I <d

An integration to ¥ and ¥ will yield

l9(a") — g Pd 2t dat < (28p+1n S 2 (9) dz.
el=§l<d (23 5] <d le=—31<d

However, the left-hand side is nothing other than

2(20) J' g!da;—Z{ {) gdz}’. )
fz—§i<d e~ <y

This will produce eq.(14), with ¢ = 2n.
This inequality will then lead to the following:

Temma. The forms

‘d z, 3 '
hj;g A{W(z)g dz o <R

with the bounded function w(x), piecewise continuous in I' and first explained

in @ and then continued on @, are completely continuous in @ with respect to G.
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Proof. The domain Kp can be covered by a finite sum X of strange squares

[x - €] < 6§ with arbitrarily small 8. By summation of the Poincaré inequality,

we obtain

o

Ky ;

gg’dmg(?.é)“-);’ {

| stsfaren | 3(Eofes

(z—31<0 r
Taking eq.(3)g according to the definition of Part I into consideration, this

means that f g°dx is completely continuous with respect to G. The complete
K
continuity o%‘ f wgzdx 1s then directly obtained from the fact that, with
K

IW(XH < W, P
l j wg‘da:i <w J‘ g dz
Ko Ko

can be estimated, in which case the right-hand side is recognized as completely

continuous.

For proving theorem 5, we refer to the lemma 18 in Part I. Thus, it is (707

sufficient to prove the complete continuity of \£g2dx with respect to G. We

resolve

fg‘da:: jg’da;-i- j gdz
i K

R~vo KR—". R

and meke use of the inequality (1.l) in the Appendix, with u = g.
After averaging there over p from R - 0 to R and over T from R - ¢ to
R - —%—, in which case it is assumed that R - o > —%—, the following is obtained

from logical estimates:

3’ Pdz < e g g dz + ole, 5‘ 2 (%g)’dw

Kp_a R Kp—ol3, R—0v Kp
B +1 -1,
for example, with ¢; = 2°7, cz = 2R~ C.
By substitution, we obtain

’J'g‘d:c.g g gPdz+c, .s gdz -i—"a‘c,j Z (-;;)’dz

Kp—yu Kp—oja R—0a Kg
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and thus also the statement, since the first two terms on the right-hand side

are completely continuous according to the auxiliary theorem.

For proving theorem 6, :Lt is sufficient a.ccordlng to lemma 18 in Part I,

to demonstrate that [ g’dx is G completely continuous. Let
r

m(g) = Minv (z)

for x = p; then, the postulate of theorem 6 means that

m(Q)—>°° for g —> oo,
Now, the following is obviously valid:

j’dzéj ’dm-}-;l(—a-) 5‘ vg'da
r

Ko r—&,
and, in addition (see footnote on p.36),
j' vg‘dx < 9Gy.
r-"x,

This constitutes the statemente.

For proving theorem 7, we resolve v(x) into
v () = v* (z) — w(a),
where v (x) and w(x) are continuous functions in I', selecte
vt (z) = V= | IS we & v
in such a manner that we have
w(z) » 0 for |z| - oo,

In the case (2)g, this argument is to exist only for l

for 0 < |x| < P, we stipulate that

vt (@) = v(z) + Voy W(T) = V)

which is possible by suitable selection without violating the continuity at
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x| = P;

conversely,



Ix] = P,

According to these findings, the form
gWyg= )‘ w(z)g'dw

in @ is bounded so that the following applies to the form defined in@:

1 (3 G o
. r

(%)
969 = va[g'da,
r
where, in the case (2)@ , reference has been made to the estimate (4). Since
obviously (%,
) Vu(9G9) = 969 = g Gy *>

is valid, G" in @ is closed.

Since v" q,ccura.tely satisfies the conditions of an auxiliary potential,
the spectral analysis is applicable to the form G'. Since its lower bound
evidently 1s Ve, this form will have no spectrum below v,. Theorem 7, namely,
tha.jo the spectrum of the operator G or of the form G = G* + W is discrete below
Vo then follows directly from theorem 17 (I), provided that it can be demon-
strated that W is completely continuous with respect to G" in @ or - which is
equivalent because of eq. (%) - with respect to G.

If then

m(p) = Maxw (z) for |z]| = o,

it follows from w(x) = O for |x| = « that

m(g) >0, for g-» oo
We now have

0 g‘jwy’dm s vwxf g*dz 4+ m(g) j g da.
e

r— KQ

Because of f g’dx < gBg, this constitutes the complete continuity of W according
r
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to the definition given in Part I.

10. Appendix 1709

1. Integral Tnequalities

Iet u(x) be a function of x = (X1, «+. X, ) piecewise continuously differ-

entiable in O < r < R. Then, the inequality

- e TIE

Kg o

exists for

1 dr
"’ér—‘rf,»—x
with0<p <P, 0<T<P, T<op,

Proof. let x = & with |€| = 1 be a point on Q;; then,

¢
wleh) —u(wl) = | 7 uiré)dr,

(o8 —2u(edultd) +w'(xd f s fr"*'(;,-"’;u(re))'dr.

k

By integrating over {11 and applying the Schwarz inequality to the left-hand side,

we obtaln

e [ T, ¢

[V Jwsa- V] weela |5 [ 55

and, from this, the inequality (1.0).
The inequality (1.0) will then yield
' ) du\s
wWio <2 | Wwdw-+2C|o—1| Z‘(ﬁ)dz (1.1)
X4

2, 2y

with Kyr instead of K., for T > p.
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2. Singularity of the Auxiliary Potential

Iet u(x) be piecewise continuously differentiable for O <

T=2, 00,2y n=1223,...

Then, the following inequality exists for 0<o<psP:
Too= 5{2( ) ¢ (r) u’}dw—-w(v)a""‘ju‘dw

Koo 2q
| = - ple)e! [Wio
with K
'fp(f)="‘-2:“‘:‘ for n = 3,4,...
,p(,)-_-;;nix% for g = 9 vith 4 > P,
r

Proof. We have

Tum [ b SAECT R a0

K o @
Lemmas

(2.1). The quantity
n,‘)

does not decrease as ¢ 2 O.

rs<P

Su’dw B
%

The proof follows directly from the above presentation of Tgp.

(2.2). One positive constant k exists so that, for sufficiently small

o(o < 0y), the following holds:

Top=—% J.u’da:.

Kn, P

Proof. Iet o3 be such a number between oo and P that we obtain

\ 1
o1 | Wldw = j udz
! j P—oa,

Ry

t Koo P

Then, for ¢ < 0 and because of Tgp = Toyp, we obtain

/110

(2.0)
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Topr =— g(";) 5 wdz — jxp’(r).u’da:.

Koo, p Ko p _
If, now, %k = Max [ ‘”("‘) ’(r):] ing, <r g P, _1t follows that
u,P g -k J. u’dz

Koo P
and thus also the statement.
(2.3). If f % (—2—;'12— adx exists, then for n 2 2,
) 1])’(0')0‘”“‘ f wdw —>”O

‘Qu g->0

and a I /711
f @' (rwda,
kp
exists.
Proof. From eq.(2.0), because of ®(r) > 0, the boundedness of J' ¢° (r)v?dx
Kap

in o follows directly and thus also the existence of
P
[P =[p0|p0r= [wda]dn
Kp [ 2,
From the existence of this integral and the nonexistence of
P
[otdr
-
it follows that a special sequence p — O exists for which

@ (a) e~ *fu'dw—vo

g~—>o

From eq:(2.0) we can then conclude that, for each sequence, o = O applies.
3) Proof of Green's Transformation

To prove

f{zg‘?,—,l;,?;a+vlq}dw-—jMlq+vlq)dz=0 (6)

r r

for £ in ¥ and g in®', we first will integrate only over Kgp:

6L,



(D%t & o+ oto+atg—oig) s
Ko,
=(Qn—l ‘. g %ld.w--an—l j g _32; fiw,

9‘, ) R

where 0 # O need be selected only in the case (2). Then, it must be demon~

strated that special sequences p ™ ® resp. p ? R and ¢ = O exist for which the

right-hand sides vanish.

Case (1): From the existence of the integral

jw"'" [lozt|dwdr < 1/)2 (& /)as | ds

r

there follows the existence of a sequence p = «, for which

" jgg—f‘-dw»o

2o

Case (2): The sequence p — = is selected as in the case (1).

From the existence of f ¢° (r)g’dx and from the existence of
Kp

Kp
the existence of

]

'\‘ w(r)lgg-'-l_-ldz= Stp(r)[rﬂ-n ‘\. lg%_'_{ldw]dr

Kp 0 Ly

P
is obtained. From this existence and from the nonexistence of f o(r)dr, it can
‘ o}

be concluded that a sequence 0 = 0O exists for which

gh—1 j lgg—’l:ldw»o

as desired.

Case (3): See also Courant (Bibl.2.5); from the existence of the integral
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R

j =t f 2 (%‘/)'dmdr'

9 2

there follows the existence of a sequence p — R, such that

®—0) | 3 (L) da~ro.

x A

From the boundary condition (1¥) on p.4b,

g fdo < 2C(R—g) S 2D (o) dz

I3¢
e o (%)
it follows on the other hand that —E——_ f gaw ~ 0.
-p
Consequently, p

[ lo3t |40 <} T 3G a0 [#d0 20

9‘ i dx e~*R

¢ 2, 2,

Case fg) Here, the boundary condition already means the required con-

vergence
e s Hdwro,

90'

(5)

Auxiliary theorem. In the case (1), it follows, for piecewise twice /713
continuously differentiable functions f(x) from $" for which Af(x) + v(x)f(x)

is a function from §' , that

j (3 (G5t @) + o) P @) da

r

exists, so that f lies in§{' .

This is so since

“2( 2 1@) +v0@) @) da

j/(z)( 41(@) + (@) | (2)) d &+ g1 j/ lo.

K,
¢ 9@

s}

Because of the existence of [ ™' [ f°dwdr, a sequence p — ® must exist
0 Q

T
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in whose vicinity [ £°dw decreases so that there

Q, 2,
d
2 j/'dw ~32 j'/.a‘?;/aw
2 2

becomes negative. Consequently, for this sequence, the left-hand side remains
bounded and, since the integrand is positive, the integral exists over K, = T.

It is demonstrated here that the case (1) represents the limiting point

case in the sense of Weyl.
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